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1Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques In Silico, Paris 75013, France, 2Inserm
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ABSTRACT

Drug attrition late in preclinical or clinical develop-
ment is a serious economic problem in the field of
drug discovery. These problems can be linked, in
part, to the quality of the compound collections used
during the hit generation stage and to the selection
of compounds undergoing optimization. Here, we
present FAF-Drugs3, a web server that can be used
for drug discovery and chemical biology projects
to help in preparing compound libraries and to as-
sist decision-making during the hit selection/lead
optimization phase. Since it was first described in
2006, FAF-Drugs has been significantly modified.
The tool now applies an enhanced structure cura-
tion procedure, can filter or analyze molecules with
user-defined or eight predefined physicochemical fil-
ters as well as with several simple ADMET (absorp-
tion, distribution, metabolism, excretion and toxicity)
rules. In addition, compounds can be filtered using
an updated list of 154 hand-curated structural alerts
while Pan Assay Interference compounds (PAINS)
and other, generally unwanted groups are also inves-
tigated. FAF-Drugs3 offers access to user-friendly
html result pages and the possibility to download
all computed data. The server requires as input an
SDF file of the compounds; it is open to all users
and can be accessed without registration at http:
//fafdrugs3.mti.univ-paris-diderot.fr.

INTRODUCTION

Chemical biology and even more so drug discovery are
challenging endeavors that usually involve high-throughput
screening computations and/or experiments, prioritization
of the hit compounds and different levels of compound op-
timization. As such, the nature/composition of the com-
pound collection used in the early phases has a significant

impact in determining both, the quantity and quality of
identified hits/leads and ultimately to the overall success of
the project (1). There are obviously different ways to pre-
pare a compound collection depending on the disease type,
the stage of the project, whether the screening is target-
based or phenotypic-based and the goals (e.g. drug discov-
ery or chemical biology) (2). Numerous rules have been de-
veloped over the years to guide the preparation of a com-
pound collection or to select molecules for optimization (3–
5), yet, all these rules, warnings, etc., have to be used with
caution as blindly applying such recipes can discard from
development many interesting molecules (6–8).

The quality of a compound collection can be defined in
many different ways but very often, physicochemical prop-
erties and the presence of some unwanted chemical groups
(e.g. toxic groups or chemicals that interfere with experi-
mental readouts) are used in the field at the beginning of the
project. For examples, some rules correlate physicochem-
ical properties with oral administration (like the rule-of-
five (RO5): molecular mass ≤ 500; calculated log P (cLogP)
≤ 5; number of hydrogen bond donors (HBD) ≤ 5; num-
ber of hydrogen bond acceptors (HBA) ≤ 10; a molecule
whose properties fell outside these boundaries would be less
likely orally absorbed and it was stated that a compound
with two parameters out of these ranges would be subject
to a flag (3)). Other rules suggest possible toxicity, antici-
pate difficulties with compound development as well as off-
target interactions, for instance, the GSK 4/400 rule (higher
risks of toxicity, interactions with off-targets or difficulties
during development if log P > 4 and MW > 400) (9); the
Pfizer 3/75 rule (the rule states that a compound has a 6-
fold reduction in preclinical toxicity when ClogP < 3 and
a topological polar surface area (tPSA) > 75 Å2 (and 24-
fold reduction for basic compounds), the rule is agnostic
to the toxicity mechanisms as it is expected that off-target
issues are often responsible for the observed toxicity (10))
and the Fsp3 rule (molecular complexity, defined as num-
ber of sp3 hybridized carbons/total carbon count) that cor-
relates molecular complexity with success in drug develop-
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ment (11). Other in silico strategies to help in preparing
a compound collection or selecting compounds for opti-
mization involve the detection of potentially toxic chemi-
cal groups (or larger substructures) often referred to as tox-
icophores (8,12–16). In addition, several observations led
to the definition of rules that flag compounds or substruc-
tures likely to interfere with biological assays, for instance
Pan Assay Interference Compounds or PAINS and aggre-
gators (17–19). Quantitative structure-activity relationship
(QSAR) models, that are trained to predict specific prop-
erties or toxicological endpoints, can also assist compound
selection and optimization (2).

Some of the above-mentioned properties can be com-
puted using commercial packages provided by most ma-
jor software companies working in the field of drug de-
sign while some freely available web services, provided by
academic groups or by the private sector, are also avail-
able, for instance Molinspiration (Molinspiration Chemin-
formatics, for instance for the RO5 computations), PRO-
TOX (20) (Prediction of Rodent Oral TOXicity) or the Ag-
gregator Advisor (to search for molecules that aggregate,
http://advisor.bkslab.org/). The URLs for most online tools
in the field are listed at our website www.vls3d.com (21).
We have developed an online tool in 2006 (22) named Free
ADMET Filtering for Drugs (FAF-Drugs) that was opti-
mized in 2011 (23) (FAF-Drugs2) and that is now much
further enhanced (FAF-Drugs3). It should be noted here
that freely available tools most often compute data for only
one compound and/or do not compute several of the rules
mentioned above or, else, compute properties that are not
implemented in FAF-Drugs and as such are complemen-
tary to our server.

FAF-Drugs3: SERVICE OVERVIEW AND ENHANCE-
MENTS

Since its first release in 2006 (22), FAF-Drugs has been
used by many groups worldwide (more than 30 000 con-
nections) to prepare compound collections or to analyze a
small list of chemical compounds. In 2006, FAF-Drugs was
designed to perform only physicochemical filtering while
the version 2 reported in 2011 (23) was the first free web-
based package capable of preparing compound libraries
by combining physicochemical rules, undesirable functional
group searches and detection of PAINS (18). The major
changes introduced in FAF-Drugs3 are: a new input data
curation procedure including new ways to search for salts,
new ways to predict solubility, optimized computations of
properties to for instance predict blood brain barrier pene-
tration or administration by inhalation among others, de-
velopment of new pre-defined drug-like and lead-like fil-
ters, computations of the 3/75 and of the GSK 4/400 rules,
search for toxicophores using a hand-curated list of struc-
tural alerts, identification of likely protein–protein interac-
tion inhibitors, the prediction of drug-induced phospholipi-
dosis (24), the implementation of the Eli-Lilly open drug
discovery medicinal chemistry filter (12) and many new
graphical windows such as a chart representing compound
complexity. Several selected changes are discussed below.

WEB SERVER

FAF-Drugs3 is user-centered as it has a new user-friendly
interface with new graphical windows that facilitate the
analysis of the compounds online. The FAF-Drugs3 web
server is an easy-to-use service consisting of a set of seven
object-oriented Python modules embedded in the RPBS’
Mobyle framework (25). Mobyle is a centralized workspace
for the end-user and an on-the-fly program results pipelin-
ing. This portal also allows users to open a personal session
upon registration (not mandatory) where data are stored.
Each compound processed by FAF-Drugs3 is represented
as a molecular object importing methods from the OpenBa-
bel toolkit through its Python wrapper Pybel which allows
to access to the OpenBabel C++ library (26). Furthermore,
FAF-Drugs3 Python modules act as generators of methods
belonging to this chemical object and needed for the filter-
ing steps. The Mobyle frontend submits all the FAF-Drugs3
processes to an 800 core cluster running on Debian Operat-
ing System and managed by SUN Grid Engine.

In the front-page, the user is invited to upload a file and to
select the type of filtering computations that should be car-
ried out. As illustrated in Figure 1, FAF-Drugs3 performs
the following main procedures: (i) an input data curation
stage that removes large molecules and compounds con-
taining some types of inorganic atoms and a desalting pro-
cedure, a structure normalization step and the removal of
duplicates, (ii) the computation of several physicochemical
properties and rules and the filtering of the small molecules,
(iii) the detection of substructures such as potential toxic
groups, aggregators and PAINS and (iv) the output section
where the results are reported and from where files can be
downloaded. Molecules treated by FAF-Drugs3 can then
be piped into other software packages like our 3D generator
software Frog2 (27) (http://bioserv.rpbs.univ-paris-diderot.
fr/services/Frog2).

Input

The FAF-Drugs3 web server only accepts SDF files (we
limit the number of compounds to 50 000) where each
molecule has a unique identification number (ID). In ad-
dition, we have implemented the service Bank-Formatter
on Mobyle (see http://fafdrugs3.mti.univ-paris-diderot.fr/
links) to facilitate the preparation of the input file. The
Bank-Formatter service to convert SMILES input file (us-
ing Openbabel libraries) to a suitable SDF file for FAF-
Drugs3. Similarly if the input SDF file does not have the
right format with an ID field, then the service can help
in preparing the appropriate input SDF file. The Bank-
Formatter SDF output file can be piped into the FAF-
Drugs3 service through the Mobyle interface. Note that
RPBS’ Mobyle also allows the user to draw one com-
pound with the ChemAxon’s Marvin Sketch applet (www.
chemaxon.com) and authorizes the output SDF file to be
sent to FAF-Drug3.

Output

Once the FAF-Drugs3 process is finished, the user is redi-
rected to the result pages. All data can be downloaded and
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Figure 1. FAF-Drugs3 flow chart. Users can upload a single molecule or a compound collection. The molecules are treated following the selected filter
parameters and structural alerts. Several output files can be visualized and or downloaded such as the Accepted, Rejected and Intermediate SDF files and
the file containing the PAINS compounds.

two key web-based interfaces are offered (see Figure 1). The
first one can be defined as a summary result page where
users can find links for downloading all filtered compound
files Accepted.sdf (compounds with no structural alerts and
satisfying the physicochemical filter), Intermediate.sdf (low-
risk structural alerts), Rejected.sdf (the molecules that do
not pass the selected or user-defined physicochemical filter
which include a high-risk structural alert and/or exceed the
threshold of occurrence of low-risk structural alerts) and
PAINS.sdf (molecules flagged due to the presence of some
chemical groups that belong to the PAINS category). Sev-
eral tabulated files are also available: results.csv (contain-
ing the computed physico-chemical descriptors), groups.csv
(containing the results of the structural alert searches) and
pains.csv (containing the results of the search for PAINS).
Then, a brief statistical summary of the filtering process
is shown, graphical representations of the distributions of
several properties, the ranges of the physicochemical fil-
ters applied and a sortable table containing all compounds
analyzed with their ADMET filtering state, color-coded
according to the compound status (green, blue and red
for, respectively, Accepted, Intermediate and Rejected). A
click on the compound ID opens the second web-based in-
terface that can be defined as a detailed result page. On
this new page, one can retrieve all computed values, a
list of all detected problems justifying the classification of
the compound in the Rejected or Intermediate basket, a
2D depiction picture of the selected compound (based on
ChemAxon molconvert (www.chemaxon.com)), and a prin-
cipal component analysis mapping the selected compound

into the oral chemical space. This oral space contains 916
oral drugs obtained from Dr Douguet (28). Furthermore,
three radar plots are presented to illustrate how the com-
pound fits into the used physicochemical filters, to highlight
the complexity of the molecule and to graphically give a
crude estimation of possible oral administration. In addi-
tion, several rules of thumb are computed (e.g. 3/75, 4/400,
etc.) and the results are shown for each selected compound.

COMPUTATIONS OF MOLECULAR PROPERTIES
AND DETECTION OF CHEMICAL GROUPS

Curation procedure

A data curation procedure is applied with several chained
steps:

(i) Removal of large compounds (i.e. molecules with more
than 120 heavy atoms), of compounds that contain an
atom other than H, C, N, O, F, P, S, Cl, Br, I, B and
isotopes.

(ii) A desalting procedure, which was optimized in order
to correctly detect the salt part of a mixture. We col-
lected 211 most used salts in medicinal chemistry and
designed the corresponding SMARTS strings. These
strings are then compared with the different parts of
the mixtures identified in the input file and only the
part recognized as a salt is removed. Otherwise, if no
known salts are recognized, the process categorizes the
molecules as mixtures and the molecules are not evalu-
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ated further. Mixtures are written in a specific SDF file
named Mixtures.sdf that the user can analyze.

(iii) After a deprotonation step, the normalization of eight
key chemical functions (amine, nitro, carboxylic acid,
phosphonamide, amide, sulfonamide, phosphate and
sulfate) is performed and a ring aromatization pro-
cedure is applied. This step is performed with the
ChemAxon’s Standardizer Academic package (www.
chemaxon.com) and in-house SMARTS depicting pat-
terns.

(iv) A duplicates removal step is performed by compar-
ing each normalized compound against all the other
molecules contained in the file. The CANSMILES
strings internally generated by OpenBabel representing
molecules in a unique manner are compared and du-
plicates are removed. As stereoisomers can have differ-
ent bioactivities, the different forms of the same com-
pound are kept only when the stereochemistry is noted
in the input file, and as such, these compounds are not
considered as duplicates.

It is important to note that if users only need to curate
a small compound library (without computing other prop-
erties), then the Bank-Cleaner service (http://fafdrugs3.mti.
univ-paris-diderot.fr/links) can be used.

To illustrate this initial step, we processed the third release
of the NCI Open Database (September 2003) that contains
260 071 structures. We counted around 1% of internal du-
plicates, 0.3% of large compounds (more than 300 atoms),
6.6% of molecules containing inorganic atoms, 10% of com-
pounds associated with a salt and 1% of mixtures.

Physicochemical descriptors

In order to generate a compound collection with accept-
able physicochemical properties, FAF-Drugs3 computes 17
descriptors: MW, number of rigid and rotatable bonds,
log P (with XLOGP3 (29)), log D (using the ChemAxon
package (www.chemaxon.com)), tPSA (30), number of RO5
HBA and HBD (3) (HBA and HBD are detected accord-
ing to the publication with an in-house SMARTS defini-
tion depicting, respectively, the number of N and O atoms
and the number of OH and NH), number of heavy atoms,
heteroatoms/carbon atoms ratio, number of rings, maxi-
mum ring size, number of stereocenters and Fsp3 (11), num-
ber of charges and the formal charge of the molecule. In
order to correctly compute descriptors depending on the
charged state of the groups, a protonation procedure, as im-
plemented in ChemAxon, is used. It is managed by the cx-
calc command of the ChemAxon’s Calculator Plugins Aca-
demic package (www.chemaxon.com) and our protocol se-
lects the major microspecies at pH 7.4.

Physicochemical filtering parameters

According to the type of screening assays and/or the na-
ture of the target, the desired physicochemical properties of
the compounds can vary. Thus, FAF-Drugs3 allows user
to design a custom filter by using the Filter-Editor form
where one can choose project-dependent physicochemical
ranges. Alternatively, FAF-Drugs3 proposes a large list of

pre-defined physicochemical filters (see Supplementary Ta-
ble S2 for ranges): an RO5-like filter (3), an RO3-filter useful
when constructing fragment libraries (31), a Probe-like fil-
ter (5), the REOS filter (32), the ZINC drug-like filter (33),
a CNS filter (34) based on the knowledge of the physico-
chemical properties of drugs and molecules that are known
to penetrate the blood-brain barrier and a respiratory filter
(35) developed after analysis of inhaled or intranasal ad-
ministered drugs. In addition, we defined a drug-like and a
lead-like filters based on the analysis of the physicochemical
properties of a set of 916 oral FDA approved drugs (28) and
on a consensus list of already published filters (3–5,33,36).

Physicochemical, ADMET rules and related to help in
decision-making

Several rules estimating oral bioavailability are imple-
mented in FAF-Drugs3, including the well-known RO5
mentioned above (3). In the same manner, the Veber rule
(37) (≤10 rotatable bonds and tPSA ≤ 140 Å2 (or ≤12
HBA+HBD), the Egan rule (38) (−1 ≤ log P ≤ 5.8 and
tPSA ≤ 130 Å2) and the Bayer TrafficLights (39) (involv-
ing tPSA, log P, MW, rotatable bonds and solubility (ESOL
model)) are calculated to estimate oral bioavailability. Re-
garding the estimation of aqueous solubility, a property that
is very difficult to predict correctly (40,41), two approaches
have been implemented in FAF-Drugs3: the ESOL model
giving a rate of log S (42) and the Solubility Forecast in-
dex (43) indicating if a compound has a reasonable chance
to be soluble in water (i.e. when its log D (pH7.4) + num-
ber of Aromatic Rings < 5 (the log D is computed with the
ChemAxon’s Calculator Plugins Academic package (www.
chemaxon.com)). Our web server, along with descriptor cal-
culations, computes also several other rules: the GSK 4/400
(9) and Pfizer 3/75 (10). In addition, FAF-Drugs3 embeds
the freely available Eli-Lilly open drug discovery medici-
nal chemistry software (12). This package was developed to
flag, accept or reject compounds according to the presence
of difficult chemical groups and of some other properties
including their resemblance to known drugs. A compound
that passes this filter can enter the open drug discovery pro-
gram offered by the company.

Furthermore, if the users are interested in preparing a
compound collection potentially enriched in inhibitors of
protein–protein interactions, we have previously reported a
decision tree model named PPI-HitProfiler (44) that ana-
lyzes the 3D shape of a compound and search for a critical
number of multiple bonds, this tool is now implemented on-
line. In this case however, the users should upload molecules
in 3D. As it is known that many protein–protein interac-
tions inhibitors often have a high log P and high MW (45),
we anticipate that users wishing to prepare such specialized
collections would benefit coupling the PPI-HitProfiler with
the other filters that we have implemented in our server.

Toxicophores and molecules interfering with biological assays

Structural alerts here include several known toxicophores,
which are chemical moieties directly and/or indirectly
linked to toxicity, and also substructures or molecules in-
terfering with biological assays. Searches for such molecules
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Figure 2. FAF-Drugs3 alerts identified on oral drugs. Search for the pres-
ence of structural alerts and PAINS in 778 oral drugs (i.e. the oral drugs
that had clear annotation in terms of therapeutic areas). Thirty percent of
drugs (in green) do not show any structural alert; 7.8% of the alerts re-
vealed a phenol group (in blue) and 7% of the drugs are flagged as PAINS
(in orange).

or toxicophores were already performed in FAF-Drugs2 but
we have introduced several changes and optimized the pro-
cess.

Regarding toxicophores, a survey of the literature was
made in order to optimize the definition of the SMARTS
strings used for the search as compared to the FAF-Drugs2
version. We gathered a consensus list of 154 documented
toxicophores (see Supplementary Table S1 for the name of
the chemical groups and corresponding SMARTS codes),
i.e. if there are no or very little published data on the groups,
it is not implemented in FAF (2,4,8,12–16,18,46–47). This

final list includes chemical functions, for instance warheads
where the toxicity is linked to an inherent direct chemical
reactivity (such as epoxides) but also to structural groups
that require metabolism with subsequent generation of a re-
active function (e.g. anilines) or yet alerts that usually im-
ply tight binding to CYP450 enzymes. This list also con-
tains mutagenics like quinones or coumarins that can act as
DNA intercalators. For some of them, according to reports
in the literature and a structural analysis of approved drugs,
we decided to apply a threshold cutoff on the number of
occurrences of a given substructure in the same compound
(e.g. we accept three occurrences of the nitro structural alert
because such group could easily be substituted while we au-
thorize only one furan five-membered aromatic ring). De-
pending on such analysis, the molecule is then flagged (inter-
mediate basket) or removed (rejected basket). Each struc-
tural alert SMARTS definition was depicted with the on-
line web-server SMARTSViewer (48) in order to graphically
validate the pattern. Then, the chemical groups of interest
were benchmarked against test compounds that contained
the desired substructures; these test structures were down-
loaded from PubChem (49). Another validation step (see
below) was performed to further evaluate our SMARTS on
a list of annotated drugs (13).

With regard to molecules interfering with assays, the
FAF-Drugs2 web server (23) had a total of 326 SMARTS
definitions for frequents hitters (50,51) (15 patterns) plus
aggregators (52) and promiscuous inhibitors (19) (we have
implemented a total of 311 patterns for these two groups).
Also, 511 patterns to search for PAINS compounds (18)
were implemented. All these SMARTS are present in FAF-
Drugs3 (the SMARTS codes are available in Supplemen-
tary Table S1) and were tested again. For example, a new
benchmark for PAINS recognition was carried out against
the original control data set of 10 000 structures from the
WEHI 93K HTS library (18) in order to verify that the com-
pound preparation and curation steps had no impact on the
accuracy of the PAINS detections.

VALIDATION AND CASE STUDIES

Detection of toxicophores

As noted above, we have tested extensively FAF-Drugs3. In
order to assess further the SMARTS codes that search for
toxicophores, we compared the output of FAF-Drugs3 with
the results of a previous report (13) that looked for the pres-
ence of structural alerts in marketed and withdrawn drugs.
In the present study, we decided to study a subset of 40
low molecular weight compounds selected at random in the
study of Stepan et al. FAF-Drugs3 detected a problematic
moiety in 36 out of the 40 compounds, with an efficacy of
100% with regard to the nature of the alerts (see Table 1 and
Supplementary Table S3).

Analysis of drug compounds

In order to test further the FAF-Drugs3 service, we de-
cided to analyze about 1500 annotated FDA-approved
drugs. We selected only oral drugs and compounds that
were annotated in terms of therapeutic areas. We made
this selection following the established Tufts Center for
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Table 1. Detection of toxicophores on some selected molecules

Four drugs taken from the top 200 drugs marketed in the USA and their structural alerts are shown. These molecules were annotated by Stepan et al.
(13) and the results obtained with FAF-Drusg3 are shown (see also Supplementary Table S3 for the analysis of 40 drugs). A recent study suggests that
2-Aminothiazoles could be considered as frequent-hitting fragments (51).

the Study of Drug Development and FDA’s definitions.
Thus, we collected 778 compounds categorized in 19 ther-
apeutic areas: Allergology, Analgesics, Anesthetics, Anti-
Inflammatory, Cardiology, Dermatology, Endocrinology,
Family, Gastroenterology, Hematology, Immunology, In-
fectious, Musculoskeletal, Neurology, Nutrition, Obstet-
rics, Oncology, Ophthalmology, Otolaryngology, Pharma-
cology, Pulmonary, Rheumatology and Urology. We ana-
lyzed the physico-chemical properties of these compounds
and we also checked if FAF-Drugs3 could identify the struc-
tural alerts present in these molecules. The analysis showed
that only 30% of these oral drugs do not contain struc-
tural alerts (Figure 2) while 29% of the alerts are low-risk
anilines (i.e. the anilinic nitrogen atom is not terminal, but
can be incorporated in an aromatic ring). We also detailed
which structural alerts are the most frequently detected in
four therapeutic areas (see Supplementary Figure S4). One
notes that the infectious and oncologic areas are the worst
with regard to structural alerts with only 14% of the drugs
without detected toxicophores. Overall, the most frequent
alert is the aniline, especially the masked aniline. Michael
Acceptors, phenol or pyrrole can be problematic moieties
that are frequently retrieved in the different therapeutic ar-
eas. Regarding the physico-chemical properties, these oral
drugs globally satisfy the RO5. Indeed, 630 drugs out of the
778 (81%) have no RO5 violation. Again, the infectious area
is among the worst where 52 drugs out of 159 (33%) show
at least one RO5 violation. It should be underlined that in
the seminal Lipinski et al. analysis (3), antibiotics (and nat-
ural products) were not considered. When investigating the
dermatologic area, it is interesting to note that 50% of the
molecules do not satisfy the RO5. Analysis of the four de-
scriptors involved in the RO5 and their values computed
for the approved compounds that violate this rule underline

(see Supplementary Figure S5) that log P and MW are most
often responsible for the rejection, 80 and 78%, respectively.

CONCLUSIONS AND FUTURE DIRECTIONS

We believe that FAF-Drugs3 can contribute to the design of
high-quality compound collections. Further, FAF-Drugs3
outputs should assist decision-making and help users in se-
lecting the molecules that could have a higher probability of
success and that are best suited for optimization. Our tool
should help in saving time and money to the scientific com-
munity working in the field of drug discovery, chemical biol-
ogy and environmental sciences. In order to keep the service
at a high standard, updates are planned twice a year. This
will involve code optimizations to deal with larger chemical
collections as well as adding new functionalities.

AVAILABILITY

Help page: fafdrugs3.mti.univ-paris-diderot.fr.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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